
Turkish Journal of Mathematics Turkish Journal of Mathematics 

Volume 47 Number 7 Article 9 

11-9-2023 

Generalized Pell graphs Generalized Pell graphs 

VESNA IRSİC 

SANDI KLAVZAR 

ELİF TAN 

Follow this and additional works at: https://journals.tubitak.gov.tr/math 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
IRSİC, VESNA; KLAVZAR, SANDI; and TAN, ELİF (2023) "Generalized Pell graphs," Turkish Journal of 
Mathematics: Vol. 47: No. 7, Article 9. https://doi.org/10.55730/1300-0098.3475 
Available at: https://journals.tubitak.gov.tr/math/vol47/iss7/9 

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for 
inclusion in Turkish Journal of Mathematics by an authorized editor of TÜBİTAK Academic Journals. For more 
information, please contact academic.publications@tubitak.gov.tr. 

https://journals.tubitak.gov.tr/
https://journals.tubitak.gov.tr/
https://journals.tubitak.gov.tr/math
https://journals.tubitak.gov.tr/math/vol47
https://journals.tubitak.gov.tr/math/vol47/iss7
https://journals.tubitak.gov.tr/math/vol47/iss7/9
https://journals.tubitak.gov.tr/math?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol47%2Fiss7%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol47%2Fiss7%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.55730/1300-0098.3475
https://journals.tubitak.gov.tr/math/vol47/iss7/9?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol47%2Fiss7%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:academic.publications@tubitak.gov.tr


Turk J Math
(2023) 47: 1955 – 1973
© TÜBİTAK
doi:10.55730/1300-0098.3475

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Generalized Pell graphs

Vesna IRŠIČ1,2, Sandi KLAVŽAR1,2,3,∗, Elif TAN4
1Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
2Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

3Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
4Department of Mathematics, Faculty of Science, Ankara University, Ankara, Turkiye

Received: 26.07.2023 • Accepted/Published Online: 06.09.2023 • Final Version: 09.11.2023

Abstract: In this paper, generalized Pell graphs Πn,k , k ≥ 2 , are introduced. The special case of k = 2 are the
Pell graphs Πn defined earlier by Munarini. Several metric, enumerative, and structural properties of these graphs are
established. The generating function of the number of edges of Πn,k and the generating function of its cube polynomial
are determined. The center of Πn,k is explicitly described; if k is even, then it induces the Fibonacci cube Γn . It is also
shown that Πn,k is a median graph, and that Πn,k embeds into a Fibonacci cube.

Keywords: Fibonacci cube; Pell graph; generating function; center of graph; median graph; k -Fibonacci
sequence

1. Introduction
The Fibonacci sequence is one of the most famous sequences in mathematics. The nth Fibonacci number Fn

is defined by Fn = Fn−1 + Fn−2 , n ≥ 2 , with initial values F0 = 0 and F1 = 1. Fibonacci numbers and their
generalizations have many interesting properties and different applications in science and art. There are several
generalizations of Fibonacci sequence. One among them is the k -Fibonacci sequence defined by Falcon and
Plaza [9] for a positive integer k as

Fn,k = kFn−1,k + Fn−2,k, n ≥ 2, (1.1)

with initial values F0,k = 0 and F1,k = 1 . The first few terms of the k -Fibonacci sequence are 0 , 1 , k , k2 +1 ,
k3 + 2k , k4 + 3k2 + 1 , k5 + 4k3 + 3k . If k = 1 , then (1.1) reduces to the Fibonacci sequence {Fn}n≥0 , and if
k = 2 , then (1.1) reduces to the Pell sequence {Pn}n≥0 , where P0 = 0 , P1 = 1 , and Pn = 2Pn−1 + Pn−2 for
n ≥ 2 . The generating function of the k -Fibonacci sequence is given by

F (t) =
∑
n≥0

Fn,kt
n =

t

1− kt− t2
. (1.2)

For more on these sequences, we refer the reader to [8]. It should also be noted that the k -Fibonacci numbers
defined and used here are not to be confused with the k -generalized Fibonacci numbers (or generalized order-k
∗Correspondence: sandi.klavzar@fmf.uni-lj.si
2010 AMS Mathematics Subject Classification: 05C75, 05C12, 05C30, 11B39
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Fibonacci numbers) that are defined as

Fn,k = Fn−1,k + Fn−2,k + · · ·+ Fn−k,k, n ≥ k,

with the appropriate initial conditions, see [14].
Fibonacci cubes were introduced in 1993 in [10]. They are closely related to the Fibonacci sequence.

They have found numerous applications elsewhere and are also extremely interesting in their own right. The
state of the art on Fibonacci cubes and related classes of graphs has been collected in the book [7] published
in 2023, the research in this direction is still ongoing, see [6, 11, 13]. On the other hand, motivated by the Pell
sequence, in 2019 Munarini introduced Pell graphs [16]. Pell graphs have been further investigated in [17]. In
this paper, based on the definition (1.1) we introduce generalized Pell graphs such that for each k ≥ 2 their
construction reflects the recursion (1.1).

The rest of the paper is organized as follows. In the next section, we define the concepts discussed in this
paper and introduce the required notation. In Section 3 the two-parameter generalized Pell graphs Πn,k are
formally defined and their fundamental structure is described. Among other results we determine the generating
function of the number of edges of Πn,k and observe that they are traceable, that is, they contain Hamiltonian
paths. In Section 4 we determine the radius and the diameter of Πn,k . Furthermore, we describe the structure
of the center of Πn,k . Interestingly, if k is even, then the center of Πn,k induces the Fibonacci cube Γn .
In Section 5 additional properties of Πn,k are established: the generating function of its cube polynomial,
distribution of its degrees, the fact that Πn,k is a median graph, and that Πn,k embeds into a Fibonacci cube.
We conclude the paper with some remarks on a similar project undertaken independently by Došlić and Podrug∗

and with some open problems.

2. Preliminaries
Let G = (V (G), E(G)) be a graph where V (G) is a set of vertices and E(G) is a set of edges consisting of
unordered pairs of vertices. The numbers of vertices and edges in G are called the order and the size of G ,
respectively. The degree deg(u) of a vertex u ∈ V (G) is the number of edges incident with it in G . As usual,
we use ∆(G) and δ(G) to denote the maximum and the minimum degree of G , respectively. The subgraph
induced by X ⊆ V (G) is denoted by G[X] .

The distance d(u, v) between vertices u and v of a graph G is the number of edges on a shortest u, v -
path. The eccentricity ecc(u) of a vertex u ∈ V (G) is the maximum distance between u and all other vertices
of G . The radius rad(G) and the diameter diam(G) of G are the minimum and the maximum eccentricity of
the vertices of G , respectively. The center C(G) of G is the set of vertices u ∈ V (G) with ecc(u) = rad(G) .
The periphery of G is defined as the set of vertices u ∈ V (G) with ecc(u) = diam(G) .

The Cartesian product G□H of graphs G and H has vertices V (G) × V (H) and edges (g, h)(g′, h′) ,
where either g = g′ and hh′ ∈ E(H) , or h = h′ and gg′ ∈ E(G) . The r -cube Qr , r ≥ 1 , is the graph with
V (Qr) = {0, 1}r , with an edge between two vertices if and only if they differ in exactly one coordinate. That
is, if x = (x1, . . . , xr) and y = (y1, . . . , yr) are vertices of Qr , then xy ∈ E(Qr) if and only if there exists
j ∈ [r] = {1, . . . , r} such that xj 6= yj and xi = yi for every i 6= j . The r -cube Qr , r ≥ 2 , can also be
described as the Cartesian product Qr−1 □K2 .

∗Došlić T, Podrug L. Metallic cubes. Website https://arxiv.org/abs/2307.14054 [accessed 27 July 2023].
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Let Fn denote the set of Fibonacci strings of length n , that is, binary strings of length n that contain
no consecutive 1s. Then F0 = {ε} , F1 = {0, 1} , and if n ≥ 2 , then

Fn+2 = 0Fn+1 + 10Fn ,

where + denotes the disjoint union of sets. Consequently, |Fn| = Fn+2 . The Fibonacci cube Γn , n ≥ 1 , is
the graph with V (Γn) = Fn in which two vertices are adjacent if they differ in a single coordinate. Hence
|V (Γn)| = Fn+2 . Note that the strings 0Fn+1 in Fn+2 induce a subgraph isomorphic to Γn+1 and the strings
10Fn induce a subgragraph isomorphic to Γn .

If w is a word over an alphabet Σ and a ∈ Σ , then a run of as is a maximal subword of w such that
all of its letters are a (sometimes called a block). (For the research on runs in binary strings and the so-called
Fibonacci-run graphs see [1, 4, 5, 19].) A Pell string is a word over the alphabet T = {0, 1, 2} such that there
are no runs of 2s of odd length [16]. Equivalently, a Pell string is a word over the alphabet T ′ = {0, 1, 22} . Let
Pn denote the set of Pell strings of length n . Then P0 = {ε} , P1 = {0, 1} and for n ≥ 0 ,

Pn+2 = 0Pn+1 + 1Pn+1 + 22Pn .

Thus |Pn| = Pn+1 . The Pell graph Πn , n ≥ 0 , has V (Πn) = Pn and two vertices in Πn are adjacent whenever
one of them can be obtained from the other by replacing a 0 with a 1 (or vice versa), or by replacing a factor
11 with 22 (or vice versa). Then Π0 = K1 , Π1 = K2 , and |V (Πn)| = Pn+1 . Furthermore, the number of
edges in Πn satisfies |E(Πn)| = |E(Πn−1)| + |E(Πn−1)| + |E(Πn−2)| + Pn+1 + Pn . In Figure 1 the first four
Pell graphs are drawn. See [16] for more on Pell graphs.

ε

Π0

0

1

Π1

00

01

10

11 22

Π2

000

001

010

011

022

100

101

110

111

122

220

221

Π3

Figure 1. Pell graphs Πn for n ∈ {0, 1, 2, 3} .

3. Generalized Pell graphs and their basic properties
Motivated by the facts from the introduction, we now define generalized Pell graphs as follows.

If k ≥ 2 , then a generalized Pell string is a string over the alphabet {0, 1, . . . , k − 1, kk} . Note that a
generalized Pell string with k = 2 is a Pell string, and that if α is a generalized Pell string, then each run of
k s is of even length. If n ≥ 0 and k ≥ 2 , then let Fn,k be the set of the generalized Pell strings of length n .
Clearly, F0,k = {ε} and F1,k = {0, 1, . . . , k − 1} , while for n ≥ 2 we have

Fn,k = 0Fn−1,k + 1Fn−1,k + · · ·+ (k − 1)Fn−1,k + kkFn−2,k .
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Therefore, |Fn,k| = Fn+1,k, where the values Fn,k are defined in (1.1).
Now, if n ≥ 0 and k ≥ 2 , then the generalized Pell graph Πn,k has the vertex set V (Πn,k) = Fn,k and

two vertices being adjacent whenever one of them can be obtained from the other by either replacing an i with
an i+ 1 (or vice versa), where i ∈ {0, 1, . . . , k− 2} , or by replacing one factor (k − 1) (k − 1) with kk (or vice
versa) in such a way that the new string is again a generalized Pell string. Note that Πn,2 = Πn . In Figure 2
the generalized Pell graphs Πn,3 , n ∈ {0, 1, 2, 3} , are shown.

ε

Π0,3

0

1

2

Π1,3

00

01

02

10

11

12

20

21

22 33

Π2,3

000

001

002

033 133 233

330

331

332

100 200

210

220

012

022

Π3,3

Figure 2. Generalized Pell graphs Πn,3 for n ∈ {0, 1, 2, 3} . To make the figure transparent, not all vertices
are labeled.

The way we defined generalized Pell graphs appeared to us as the (most) natural generalization of Pell
graphs such that the order of the graph is counted by the k -Fibonacci sequence. But there are other ways to
extend Pell graphs, for instance, to use the alphabet {0, 1, 22, 33, . . . , kk} . In this case, however, the number of
vertices vn would satisfy vn = 2vn−1 + (k − 1)vn−2 , and not the recursion from (1.1).

The fundamental decomposition of the generalized Pell graph Πn,k is the following. Note that each of the
induced subgraphs Πn,k[jFn−1,k] , j ∈ {0, . . . , k − 1} , is isomorphic to Πn−1,k and it is denoted by jΠn−1,k .
In addition, the induced subgraph Πn,k[kkFn−2,k] is isomorphic to Πn−2,k and denoted by kkΠn−2,k . Then

it is straightforward to see that Πn,k[
∪k−1

j=0 jΠn−1,k] is isomorphic to the Cartesian product of Πn−1,k and the
path on k vertices. Additionally, each vertex from kkΠn−2,k has exactly one neighbor in (k − 1)Πn−1,k . For
n ≥ 2 we formally denote this fundamental decomposition as follows:

Πn,k = 0Πn−1,k ⊕ 1Πn−1,k ⊕ · · · ⊕ (k − 1)Πn−1,k � kkΠn−2,k, (3.1)

with Π0,k = K1 and Π1,k is the path on k vertices. See Figure 3.
Since the generalized Pell graph Πn,k is defined on the vertex set Fn,k, the number of vertices of Πn,k

is Fn+1,k .

1958



IRŠIČ et al./Turk J Math

0Πn−1,k

1Πn−1,k

(k − 1)Πn−1,k (k − 1)(k − 1)Πn−2,k

kkΠn−2,k

• • •

• • •...
...

...
...

. . .

Figure 3. The fundamental decomposition of Πn,k .

From the fundamental decomposition of Πn,k in (3.1), the edges of Πn,k are of the following four types:

(i) edges from k copies of Πn−1,k,

(ii) edges from Πn−2,k,

(iii) the link edges between the vertices in the k copies of Πn−1,k , and

(iv) the link edges between the vertices in kkΠn−2,k and (k − 1)(k − 1)Πn−2,k.

Thus the number of edges can be obtained by the following recurrence relation, for n ≥ 2

|E(Πn,k)| = k|E(Πn−1,k)|+ |E(Πn−2,k)|+ (k − 1)Fn,k + Fn−1,k

or (by using the recurrence relation of k -Fibonacci numbers)

|E(Πn,k)| = k|E(Πn−1,k)|+ |E(Πn−2,k)|+ Fn+1,k − Fn,k (3.2)

with |E(Π0,k)| = 0 and |E(Π1,k)| = k − 1.

Proposition 3.1 The generating function of the number of edges in Πn,k is

∑
n≥0

|E(Πn,k)|tn =
(k − 1 + t) t

(1− kt− t2)
2 .

Proof Denote the generating function of the sequence of the number of edges in Πn,k by E(t) . From (3.2),
we have
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E(t) =
∑
n≥0

|E(Πn,k)|tn

= |E(Π0,k)|+ |E(Π1,k)|t+
∑
n≥2

|E(Πn,k)|tn

= (k − 1) t+
∑
n≥2

(k|E(Πn−1,k)|+ |E(Πn−2,k)|+ Fn+1,k − Fn,k) t
n

= (k − 1) t+ k
∑
n≥2

|E(Πn−1,k)|tn +
∑
n≥2

|E(Πn−2,k)|tn +

∑
n≥2

Fn+1,kt
n −

∑
n≥2

Fn,kt
n

=
(
kt+ t2

)
E(t) + (k − 1)t+

∑
n≥0

Fn+1,kt
n −

∑
n≥0

Fn,kt
n

=
(
kt+ t2

)
E(t) +

(
1

t
− 1

)
F (t)− 1.

Thus from this identity and the generating function in (1.2) the proposition follows. 2

Proposition 3.2 The size of Πn,k is

|E(Πn,k)| =
n∑

i=0

Fi,k (Fn−i+2,k − Fn−i+1,k) .

Proof From Proposition 3.1, we have

E(t) = t−1 (k − 1 + t)F 2(t).

From the product of the formal power series, we have

F 2(t) =

∞∑
n=0

n∑
i=0

Fi,kFn−i,kt
n.

Hence we can compute as follows:

E(t) =
(
(k − 1) t−1 + 1

)( ∞∑
n=0

n∑
i=0

Fi,kFn−i,kt
n

)

= (k − 1)

∞∑
n=0

n+1∑
i=0

Fi,kFn−i+1,kt
n +

∞∑
n=0

n∑
i=0

Fi,kFn−i,kt
n

=

∞∑
n=0

n∑
i=0

Fi,k ((k − 1)Fn−i+1,k + Fn−i,k) t
n

=

∞∑
n=0

n∑
i=0

Fi,k (kFn−i+1,k + Fn−i,k − Fn−i+1,k) t
n
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=

∞∑
n=0

n∑
i=0

Fi,k (Fn−i+2,k − Fn−i+1,k) t
n.

2

Using the fundamental decomposition (3.1) and the same methods used in the case of Fibonacci cubes
(see [7]), the following holds. We omit the proof.

Proposition 3.3 For every n ≥ 0 and k ≥ 2 , the graph Πn,k has a Hamiltonian path.

Since Πn,k is bipartite and when n is even the partite sets are of different sizes, Πn,k has no Hamiltonian
cycle if n is even. If n is odd, it is not obvious which graphs Πn,k are Hamiltonian and which are not (see
Problem 5.9).

4. Radius and diameter
If t is a word over alphabet Σ , then |t|i denotes the number of occurrences of the letter i ∈ Σ in the word t .
A substring consisting of m consecutive letters i ∈ Σ is denoted by im .

Proposition 4.1 If n ≥ 1 and k ≥ 2 , then

rad(Πn,k) =

⌊
kn

2

⌋
.

Proof Let t = t1 . . . tn ∈ V (Πn,k) . We distinguish two cases.

Case 1 k is even.
Let |t|k = 2ℓ . Then |t|0+ · · ·+ |t|k−1 = n−2ℓ . Consider the generalized Pell string t′ obtained from t by
first exchanging the role of i and i+ k

2 for every i ∈ {0, . . . , k
2 − 1} , and then replacing each substring kk

with 00 . Exchanging the role of i and i+ k
2 requires k

2 consecutive changes in the string, while replacing kk

with 00 requires 2k−1 consecutive changes (for example, kk → (k−1)(k−1) → (k−2)(k−1) → · · · → 00).
Since these changes are disjoint, we obtain

d(t, t′) = (n− 2ℓ)
k

2
+ ℓ(2k − 1) =

kn

2
+ ℓ(k − 1) ≥ kn

2
,

since ℓ ≥ 0 and k ≥ 2 .

Case 2 k is odd.
Let |t|k = 2ℓ , |t| k−1

2
= m , and let p ≥ 0 denote the maximum number of disjoint appearances of the

substring (k−1
2 )(k−1

2 ) in t . Then |t|0 + · · · + |t|k−1 − |t| k−1
2

= n − 2ℓ − m and since p is the largest

possible, m ≤ 2p+ dn−2p
2 e .

Consider the generalized Pell string t′ obtained from t by consecutively applying the following changes
to the string t :

(i) exchange the role of i and i+ k+1
2 for every i ∈ {0, . . . , k−3

2 } ;

(ii) replace each substring kk with 00 ;
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(iii) replace each of the p disjoint pairs of (k−1
2 )(k−1

2 ) with kk ; and

(iv) replace each remaining k−1
2 with 0 .

Each exchange from (i) requires k+1
2 consecutive changes in the string, each replacement from (ii) requires

2k− 1 consecutive changes, each replacement from (iii) needs k changes, and each replacement from (iv)
needs k−1

2 changes. Since these changes are disjoint, we obtain

d(t, t′) = (n− 2ℓ−m)
k + 1

2
+ ℓ(2k − 1) + pk + (m− 2p)

k − 1

2

=
kn+ n

2
+ ℓ(k − 2)−m+ p.

Using the fact that ℓ ≥ 0 , k ≥ 3 , and m ≤ 2p+ dn−2p
2 e , we get

d(t, t′) ≥ kn+ n

2
−
⌈
n− 2p

2

⌉
− p.

If n is even, then this yields d(t, t′) ≥ kn
2 =

⌊
kn
2

⌋
, while if n is odd, we get d(t, t′) ≥ kn−1

2 =
⌊
kn
2

⌋
.

Thus rad(Πn,k) ≥
⌊
kn
2

⌋
. To prove the equality it suffices to find a vertex with eccentricity

⌊
kn
2

⌋
. We claim that

if k is even, then t =
(
k
2

)n is such a vertex, and if k is odd, then t′ =
(
k−1
2

)n is a required vertex. Indeed,

if k is even, then d(t, 0n) =
⌊
kn
2

⌋
and by the above d(t, x) ≤

⌊
kn
2

⌋
for any other vertex x ∈ V (Πn,k) , hence

ecc(t) =
⌊
kn
2

⌋
. Similarly, if k is odd and n is even, then d(t′, kn) =

⌊
kn
2

⌋
, and if k is odd and n is odd, then

d(t′, kn−10) =
⌊
kn
2

⌋
. Hence, ecc(t′) =

⌊
kn
2

⌋
as claimed. 2

The center of the Pell graph Πn is isomorphic to the Fibonacci cube Γn [16, Proposition 5]. It turns out
that the same happens for certain generalized Pell graphs (see Theorem 4.2), but not for every k ≥ 2 . Using
a computer, we have computed the cardinalities of the center of some small generalized Pell graphs. These are
given in Table 1.

Table 1. The cardinality of the center of some of the graphs Πn,k .

k
n 1 2 3 4 5 6 7 8 9 10

2 2 3 5 8 13 21 34 55 89 144
3 1 3 2 8 4 20 8 48 16 112
4 2 3 5 8 13
5 1 3 2 8 4
6 2 3 5 8 13
7 1 3 2 8 4
8 2 3 5 8 13
9 1 3 2 8 4

The values in Table 1 indicate that |C(Πn,k)| depends only on the parity of k , and not its exact value.
In the following, we prove that this is indeed the case, and explicitly describe the center of generalized Pell
graphs. For this, we introduce the following families of words.
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Let k ≥ 2 be even and set

Θn(k) =

{
t = t1 . . . tn; ti ∈

{
k

2
− 1,

k

2

}
and t contains no two consecutive k

2
− 1

}
.

It is easy to see that Πn,k[Θn(k)] ∼= Γn .
For n even define Φn(a, b) to be the set of words of length n over the alphabet {aa, ab, ba} , where the

letter ba never appears before the letter ab . For example, baaaaaabaa /∈ Φ10(a, b) , but ababbaaaba ∈ Φ10(a, b) .
Note that a word of length n consists of n/2 letters.

For n odd define Ψn(a, b) to be the set of words of length n over the alphabet {a, b} that start and
end with a , contain no substring bb , and have all runs of as of odd length. For example, abb /∈ Ψ3(a, b) ,
baaba /∈ Ψ5(a, b) and abaaa ∈ Ψ5(a, b) .

Theorem 4.2 If k ≥ 2 and n ≥ 2 , then

C(Πn,k) =


Θn(k); k even,
Φn(

k−1
2 , k+1

2 ); k odd and n even,
Ψn(

k−1
2 , k+1

2 ); k odd and n odd.

Consequently,

|C(Πn,k)| =


Fn+2; k even,
(n+ 4)2

n
2 −2; k odd and n even,

2
n−1
2 ; k odd and n odd.

In addition, if k is even, then Πn,k[C(Πn,k)] ∼= Γn .

Proof We distinguish between three main cases.

k ≥ 2 even:
We are going to prove that C(Πn,k) = Θn(k) . From this it immediately follows that Πn,k[C(Πn,k)] ∼= Γn and
that |C(Πn,k)| = Fn+2 .

Let t = t1 . . . tn ∈ V (Πn,k) . If t contains the substring kk , then reevaluating the calculation in Case 1
of the proof of Proposition 4.1 for ℓ ≥ 1 yields d(t, t′) ≥ kn

2 + 1 > rad(Πn,k) , thus such t is not in the center
of Πn,k . From now on we may thus assume that t contains no kk .

If t contains x ∈ {0, . . . , k − 1} \ {k
2 − 1, k

2} , then consider t′′ ∈ V (Πn,k) obtained in the following way.

First replace x with k − 1 if x ≤ k
2 − 2 , or with 0 if x ≥ k

2 + 1 . Next, for each other letter in t , exchange i

and i+ k
2 , i ∈ {0, . . . , k

2 − 1} . Then d(t, t′′) =
(
k
2 + 1

)
+ (n− 1)k2 = nk

2 + 1 > rad(Πn,k) .

If t contains only letters k
2 − 1 and k

2 , but it also contains at least one substring (k2 − 1)(k2 − 1) , then

consider t′′′ ∈ V (Πn,k) obtained in the following way. Replace this substring (k2 − 1)(k2 − 1) with kk , and for

the other letters in t , exchange k
2 − 1 with k − 1 and k

2 with 0 . Clearly, d(t, t′′′) = (1 + k) + (n − 2)k2 =

nk
2 + 1 > rad(Πn,k).

These arguments show that C(Πn,k) ⊆ Θn(k) . For t ∈ Θn(k) , we prove that ecc(t) ≤ nk
2 . Let

u = u1 . . . un ∈ V (Πn,k) . If ui ∈ {0, 1, . . . , k − 1} , then changing ti to ui requires at most k
2 steps. If
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uiui+1 = kk , then since t contains no two consecutive
(
k
2 − 1

)
s, the change from titi+1 to kk requires at most

k = 2 · k
2 steps. Thus d(t, u) ≤ n · k

2 = rad(Πn,k) . Thus C(Πn,k) = Θn(k) .

k ≥ 3 odd and n ≥ 2 even:
We first prove that C(Πn,k) = Φn(

k−1
2 , k+1

2 ) . Let a = k−1
2 and b = k+1

2 .
Let t = t1 . . . tn ∈ V (Πn,k) , |t|k = 2ℓ , |t|a = m , and let p ≥ 0 denote the number of appearances of the

substring aa in t which originate from the letter aa .
First we prove that if t ∈ Φn(a, b) , then t ∈ C(Πn,k) . Since t ∈ Φn(a, b) , p equals the number of times

the letter aa is used in t . Since in the words ab and ba both a and b appear an equal number of times, we
know that each of a and b appears in pairs ab and ba exactly 1

2 (n− 2p) times, and thus m = 2p+ 1
2 (n− 2p) .

If u ∈ V (Πn,k) , then

d(t, u) ≤ pk +
1

2
(n− 2p)

k − 1

2
+

1

2
(n− 2p)

k + 1

2
=

nk

2
= rad(Πn,k),

since replacing aa with kk requires k steps, replacing a with i , i 6= k , requires at most k−1
2 steps, replacing

bb with kk requires k − 2 ≤ 2k+1
2 steps, replacing b with i , i 6= k , requires at most k+1

2 steps, and replacing

ab or ba with kk requires at most k − 1 < k−1
2 + k+1

2 steps. This shows that t ∈ C(Πn,k) .
Next we prove that if t /∈ Φn(a, b) , then t /∈ C(Πn,k) . We consider the following cases.

Case 1. t contains kk .
Let t′ be as in the proof of Proposition 4.1. Then since ℓ ≥ 1 and k ≥ 3 , d(t, t′) ≥ nk

2 + 1 > rad(Πn,k).

Case 2. t does not contain kk .
Since n is even, letters in t can be paired as t2i−1t2i for i ∈ [n2 ] . We will call this partition the pair-
partition of t .

Case 2.1. t contains x , x ∈ {0, . . . , k−5
2 , k+3

2 , . . . , k − 1} .

Let t′ be as in the proof of Proposition 4.1, except that x is replaced by k − 1 if x ≤ k−5
2 and by

0 if x ≥ k+3
2 . Then since ℓ = 0 , and replacing x with k − 1 or 0 requires at least k+3

2 steps, we
obtain

d(t, t′) ≥ (n−m− 1)
k + 1

2
+

k + 3

2
+ pk + (m− 2p)

k − 1

2

=
nk + n

2
+ 1−m+ p.

Recall from the proof of Proposition 4.1 that m ≤ 2p+ n−2p
2 , thus

d(t, t′) ≥ nk

2
+ 1 > rad(Πn,k).

Case 2.2. t contains only k−3
2 , a, b , and k−3

2 appears at least once or bb appears in the pair-partition
of t .
Let t′′ be constricted from the pair-partition of t by the following:
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1. replace each pair aa with kk (requires k steps),

2. replace each pair consisting of a and k−3
2 with kk (requires k + 1 > k steps),

3. replace each pair bb with 00 (requires k + 1 > k steps),
4. replace each pair consisting of a and b with k − 1 and 0 (requires at least k steps),

5. replace each pair consisting of b and k−3
2 with 0 and k − 1 (requires at least k + 1 > k steps),

6. replace each pair (k−3
2 )(k−3

2 ) with kk (requires k + 2 > k steps).

Since k−3
2 appears at least once or bb appears as some t2i−1t2i , i ∈ [n2 ] , in t , we get

d(t, t′′) ≥ (k + 1) +
(n
2
− 1
)
k =

nk

2
+ 1 > rad(Πn,k).

Case 2.3. t contains only a and b , bb does not appear in the pair-partition of t , and ba appears at
least once before ab in the pair-partition of t .
Let q be the number of times aa appears in the pair-partition of t . Then since ba appears before
ab at least once, p ≥ q + 1 . The number of bs in t is 1

2 (n− 2q) and m = 2q + 1
2 (n− 2q) = n

2 + q .
Let t′ be obtained from t as in the proof of Proposition 4.1. Then we get

d(t, t′) =
1

2
(n− 2q)

k + 1

2
+ pk + (m− 2p)

k − 1

2
≥ nk

2
+ 1 > rad(Πn,k).

Since we found a vertex of Πn,k that is at a distance strictly more than rad(Πn,k) from t in each case, it follows
that t /∈ C(Πn,k) . Thus C(Πn,k) = Φn(a, b) .

It remains to prove that |Φn(a, b)| = (n + 4)2
n
2 −2 . For n ≥ 4 even, we have that |Φn(a, b)| =

2|Φn−2(a, b)|+2
n−2
2 since a word from Φn(a, b) either starts with aa and is followed by a word from Φn−2(a, b) ,

or starts with ab and is followed by a word from Φn−2(a, b) , or starts with ba and is followed by a word over
the alphabet {aa, ba} . Then the claim follows by induction.

k ≥ 3 odd and n ≥ 3 odd:
We first prove that C(Πn, k) = Ψn(

k−1
2 , k+1

2 ) . Again, let a = k−1
2 and b = k+1

2 .
Let t = t1 . . . tn ∈ V (Πn,k) , |t|k = 2ℓ , |t|a = m , and let p ≥ 0 denote the maximum number of disjoint

appearances of the substring aa in t .
Suppose that t ∈ Ψn(a, b) . Let r denote the number of runs of as in t . Then since each run of as is of

odd length we get p = m−r
2 , and since there is no bb , t1 6= b , and tn 6= b , there is exactly r − 1 bs in t , so we

have m = n− r + 1 .
If u ∈ V (Πn,k) , then

d(t, u) ≤ pk + (m− 2p)
k − 1

2
+ (r − 1)

k + 1

2
=

nk − 1

2
= rad(Πn,k),

since replacing aa with kk requires k steps, replacing a with i , i 6= k , requires at most k−1
2 steps, replacing b

with i , i 6= k , requires at most k+1
2 steps, and replacing ab or ba with kk requires at most k− 1 < k−1

2 + k+1
2

steps. This shows that t ∈ C(Πn,k) .
Now suppose that t /∈ Φn(a, b) . To see that t /∈ C(Πn,k) , we consider the following cases.
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Case 1. t contains kk .
Let t′ be as in the proof of Proposition 4.1. Then since ℓ ≥ 1 and k ≥ 3 , d(t, t′) ≥ nk−1

2 +1 > rad(Πn,k).

Case 2. t does not contain kk .
Letters in t can be partitioned into pairs t2i−1t2i for i ∈ [n−1

2 ] , and a singleton tn . We will call this
partition the pair-partition of t .

Case 2.1. t contains x , x ∈ {0, . . . , k−5
2 , k+3

2 , . . . , k − 1} .

Let t′ be as in the proof of Proposition 4.1, except that x is replaced by k − 1 if x ≤ k−5
2 and by

0 if x ≥ k+3
2 . Then since ℓ = 0 , and replacing x with k − 1 or 0 requires at least k+3

2 steps, we
obtain

d(t, t′) ≥ (n−m− 1)
k + 1

2
+

k + 3

2
+ pk + (m− 2p)

k − 1

2

=
nk + n

2
+ 1−m+ p.

Recall from the proof of Proposition 4.1 that m ≤ 2p+ n−2p+1
2 , thus

d(t, t′) ≥ nk − 1

2
+ 1 > rad(Πn,k).

Case 2.2. t contains only k−3
2 , a, b , but k−3

2 appears at least once or bb appears at least once or t1 = b

or tn = b .
If t1 = b and tn 6= b , then without loss of generality exchange the role of ti and tn−i for all i ∈ [n−1

2 ] .
Let t′′ be constricted from the pair-partition of t by the following:

1. replace each pair aa with kk (requires k steps),

2. replace each pair consisting of a and k−3
2 with kk (requires k + 1 > k steps),

3. replace each pair bb with 00 (requires k + 1 > k steps),
4. replace each pair consisting of a and b with k − 1 and 0 (requires at least k steps),

5. replace each pair consisting of b and k−3
2 with 0 and k − 1 (requires at least k + 1 > k steps),

6. replace each pair (k−3
2 )(k−3

2 ) with kk (requires k + 2 > k steps),

7. replace tn with 0 if tn = b and with k − 1 otherwise (requires at least k−1
2 steps, but k+1

2 if

tn ∈ {k−3
2 , b}).

Since k−3
2 appears at least once or bb appears as some pair or tn = b , we get

d(t, t′′) ≥ n− 1

2
k +

k − 1

2
+ 1 =

nk − 1

2
+ 1 > rad(Πn,k).

Case 2.3. t contains only a and b , bb does not appear in t , t1 6= b , tn 6= b , but not all runs of as are
of odd length.
Let r be the number of runs of as. Then since not all runs of as are of odd length, p ≥ m−r+1

2 .
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The number of bs in t is r − 1 and m = n − r + 1 . Let t′ be obtained from t as in the proof of
Proposition 4.1. Then we get

d(t, t′) = (r − 1)
k + 1

2
+ pk + (m− 2p)

k − 1

2
≥ nk − 1

2
+

1

2
> rad(Πn,k).

Since we found a vertex of Πn,k that is at distance strictly more than rad(Πn,k) =
nk−1

2 from t in each case,
it follows that t /∈ C(Πn,k) . Thus C(Πn,k) = Ψn(a, b) .

It remains to show that |Ψn(a, b)| = 2
n−1
2 . For n ≥ 3 odd, we have that |Ψn(a, b)| = 2|Ψn−2(a, b)| since

the word can either start by aa or ab , and in both cases, it needs to be followed by a word from Ψn−2(a, b) (in
particular, it needs to start with a). Thus the claim can be proved using induction on n . 2

We have excluded the case n = 1 from Theorem 4.2. But since Π1,k is isomorphic to the path on k

vertices, its center is isomorphic to either K1 or K2 . An example of a generalized Pell graph with its center is
presented in Figure 4.

Proposition 4.3 If n ≥ 1 and k ≥ 2 , then

diam(Πn,k) = nk −
⌈n
2

⌉
.

Proof If n is even, then d(0n, kn) = n(k − 1) + n
2 = nk − n

2 . If n is odd, then d(0n, kn−1(k − 1)) =

n(k− 1)+ n−1
2 = nk− n+1

2 . Thus diam(Πn,k) ≥ nk−dn
2 e . We need to prove that this is also the upper bound.

For t = t1 . . . tn ∈ V (Πn,k) , ecc(t) ≤ n(k − 1) + bn
2 c , since each ti can contribute at most k − 1 to the

distance by itself, and at most one more in a pair with ti−1 or ti+1 (but these pairs need to be disjoint). 2

Additionally, it is not difficult to see that if n is even, the periphery of Πn,k consists only of vertices
obtained by using strings 00 and kk . If n is odd, the periphery is formed by vertices consisting of strings 00 ,
kk , and exactly one additional occurrence of either 0 or k − 1 .

5. Additional properties
5.1. The cube polynomial

The cube polynomial of a graph G is denoted by CG(x) , and is the generating function CG(x) =
∑

i≥0 ci(G)xi,

where ci(G) counts the number of induced i -cubes in G . This polynomial was introduced in [3], see also [2, 18].
Clearly, c0(G) = |V (G)| and c1(G) = |E(G)|.

The first few cube polynomials of Πn,k are listed below:

CΠ0,k
(x) = 1

CΠ1,k
(x) = k + (k − 1)x

CΠ2,k
(x) =

(
k2 + 1

)
+
(
2k2 − 2k + 1

)
x+

(
k2 − 2k + 1

)
x2

CΠ3,k
(x) = k3 + 2k +

(
3k3 − 3k2 + 4k − 2

)
x+

(
3k3 − 6k2 + 5k − 2

)
x2

+
(
k3 − 3k2 + 3k − 1

)
x3
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Figure 4. The graph Π4,3 with its center marked in black. Notice that in this case, the center is isomorphic
to a Fibonacci cube (however, this is not the case in general for k odd).
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CΠ4,k
(x) =

(
k4 + 3k2 + 1

)
+
(
4k4 − 4k3 + 9k2 − 6k + 2

)
x

+
(
6k4 + 15k2 − 12k3 − 12k + 4

)
x2

+
(
4k4 − 12k3 + 15k2 − 10k + 3

)
x3

+
(
k4 − 4k3 + 6k2 − 4k + 1

)
x4

The next result follows from the recursive structure of Πn,k .

Proposition 5.1 The cube polynomials CΠn,k
(x) satisfy the recurrence relation

CΠn,k
(x) = (k + (k − 1)x)CΠn−1,k

(x) + (1 + x)CΠn−2,k
(x), n ≥ 2,

with the initial values CΠ0,k
(x) = 1 and CΠ1,k

(x) = k + (k − 1)x.

From the recurrence relation of the cube polynomials, we can derive the following result using standard
methods.

Proposition 5.2 The generating function of the sequence
{
CΠn,k

(x)
}
n≥0

is

∑
n≥0

CΠn,k
(x)tn =

1

1− (k + (k − 1)x) t− (1 + x) t2
.

From the generating function of the cube polynomials, we get the following result.

Proposition 5.3 For n ≥ 0, the cube polynomial CΠn,k
(x) is of degree n and

CΠn,k
(x) =

bn
2 c∑

i=0

(
n− i

i

)
(k + (k − 1)x)

n−2i
(1 + x)

i
.

5.2. Distribution of the degrees

The distribution of degrees of Pell graphs has been studied in [16]. If t ∈ V (Πn) , then

deg(t) = |t|0 + |t|1 +
1

2
|t|2 + e,

where e is the number of pairwise disjoint occurences of 11 in t . In particular, for n ≥ 1 , ∆(Πn) = 2n− 1 and
δ(Πn) =

⌈
n
2

⌉
, see [16, Proposition 27]. Since generalized Pell graphs with k = 2 are isomorphic to Pell graphs,

we will only consider graphs Πn,k for k ≥ 3 .

Proposition 5.4 If n ≥ 1 , k ≥ 3 and t ∈ V (Πn,k) , then

deg(t) = |t|0 + 2 ·
k−1∑
i=1

|t|i +
1

2
|t|k − r,

where r is the number of runs of (k − 1)s in t .
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Proof Let t = t1 . . . tn ∈ V (Πn,k) . If ti = 0 , its contribution to the degree of t is 1, while if ti ∈ [k − 2] ,
it contributes 2 (since k ≥ 3). It is also easy to see that each occurrence of kk contributes 1. Note that if
ti = ti+1 = ti+2 = ti+3 = k is the start of a run of k s in t , then only the pairs titi+1 and ti+2ti+3 will result
in a valid generalized Pell string after kk is exchanged with (k − 1)(k − 1) .

Lastly, let r be the number of runs of (k − 1)s in t and let q1, . . . , qr be the lengths of these runs.
Observe that if ti = k − 1 , it contributes 1 to the degree of t (by exchanging k − 1 with k − 2). However,
each occurrence of (k − 1)(k − 1) contributes an additional 1 to the degree of t (by exchanging it with kk ).
Note that any pair of consecutive (k − 1)s yields a generalized Pell string, thus a run of (k − 1)s of length qj

contributes qj − 1 . Then occurrences of k − 1 in t altogether contribute

r∑
i=1

qi +

r∑
i=1

(qi − 1) = 2

r∑
i=1

qi − r = 2|t|k−1 − r.

Combining the observed contributions yields the desired formula. 2

Corollary 5.5 If n ≥ 1 and k ≥ 3 , then ∆(Πn,k) = 2n and δ(Πn,k) =
⌈
n
2

⌉
.

Proof Let t ∈ V (Πn,k) . Since
∑k

i=0 |t|i = n , it clearly holds

⌈n
2

⌉
≤ deg(t) ≤ 2n.

The left bound is attained for example by the vertex kn if n is even, and by the vertex kn−1(k − 1) if n is
odd. The right bound is attained for example by the vertex 1n (since k ≥ 3). 2

Corollary 5.6 The number of vertices of Πn,k of degree ∆(Πn,k)− 1 is

n(n− 1)k−2 +

n∑
ℓ=1

(n− ℓ+ 1)(n− ℓ)k−2.

Proof If t ∈ V (Πn,k) , then deg(t) = 2n − 1 if either |t|0 = 1 and |t|k−1 = |t|k = 0 , or |t|0 = |t|k = 0 ,
|t|k−1 ≥ 1 and t contains only one run of (k − 1)s. A simple counting argument shows the formula. 2

5.3. Median graphs

A median of a triple x , y , z of vertices of a graph G is a vertex u that simultaneously lies on a shortest
x, y -path, a shortest x, z -path, and a shortest y, z -path. G is a median graph if each triple of vertices has a
unique median [15].

From [12] we know that Fibonacci cubes are median graphs and from [16] Pell graphs also belong to this
family of graphs. This property extends to all generalized Pell graphs as the next result asserts.

Proposition 5.7 If n ≥ 1 and k ≥ 2 , then Πn,k is a median graph.
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Proof (Sketch) We proceed by induction, the result being clear for n = 1 and all k since Π1,k is isomorphic to
the path with k vertices. Suppose n ≥ 2 and consider Πn,k . The part of its fundamental decomposition (3.1)

X = 0Πn−1,k ⊕ 1Πn−1,k ⊕ · · · ⊕ (k − 1)Πn−1,k

is isomorphic to the Cartesian product of Πn−1,k by the path on k vertices. As the factors are median graphs
by the induction hypothesis, and the Cartesian product operation preserves the property of being median; X is
also median. Finally, we can observe that Πn,k is obtained from X by the so-called convex peripheral expansion
(cf. [15]), hence Πn,k is median as well. 2

5.4. Subgraph of a Fibonacci cube

It is known [16, Theorem 7] that the Pell graph Πn is a subgraph of the Fibonacci cube Γ2n−1 , written as
Πn ⊆ Γ2n−1 . We prove an analogous result for generalized Pell graphs. Notice that for k = 2 , Proposition 5.8
states the same as the existing result for Pell graphs.

Proposition 5.8 If n ≥ 1 and k ≥ 2 , then

Πn,k ⊆ Γ(2k−2)n−1.

Proof We define a mapping φ : Πn,k → Γ(2k−2)n−1 in the following way. First, consider a mapping
φ′ : Πn,k → Γ(2k−2)n that maps a vertex t = t1 . . . tn ∈ V (Πn,k) in the following way:

i 7→ (10)k−1−i02i

kk 7→ 0102k−4

Clearly φ′(t) is of length (2k − 2)n , and contains no 11 , thus φ′(t) ∈ V (Γ(2k−2)n) . Observe also that φ′(t)

always ends with 0 . Deleting the ending 0 gives φ(t) ∈ V (Γ(2k−2)n−1) . By definition, φ is injective. Thus it
remains to show that it maps edges to edges.

Let pq ∈ E(Πn,k) , where p = p1 . . . pn and q = q1 . . . qn . If p and q differ in only one letter, then
without loss of generality, pi = ℓ , qi = ℓ + 1 , and pj = qj for all j ∈ [n] \ {j} , for some 1 ≤ ℓ ≤ k − 2 and
1 ≤ i ≤ n . Thus φ(p)(2k−2)(i−1)+2(k−ℓ−2)+1 = 1 , φ(q)(2k−2)(i−1)+2(k−ℓ−2)+1 = 0 and φ(p)j = φ(q)j for all
j ∈ [(2k − 2)n− 1] \ {(2k − 2)(i− 1) + 2(k − ℓ− 2) + 1} . So φ(p)φ(q) ∈ E(Γ(2k−2)n−1) .

Otherwise, it must hold for some i , 1 ≤ i ≤ n− 1 , that pi = pi+1 = k − 1 , qi = qi+1 = k , and pj = qj

for all j ∈ [n] \ {i, i + 1} . Thus φ(q)(2k−2)(i−1)+2 = 1 , φ(p)(2k−2)(i−1)+2 = 0 , and φ(p)j = φ(q)j for all
j ∈ [(2k − 2)n− 1] \ {(2k − 2)(i− 1) + 2} . Hence again φ(p)φ(q) ∈ E(Γ(2k−2)n−1) . 2

Concluding remarks

In the final stages of preparing our paper, we learned that Došlić and Podrug † had independently proposed
a second generalization of Pell graphs. Their motivation was much as ours, that is, to construct graphs that
reflect (1.1), and doing so, they defined graphs denoted by Πk

n . While these graph have the same order and
†Došlić T, Podrug L. Metallic cubes. Website https://arxiv.org/abs/2307.14054 [accessed 27 July 2023].
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size as the generalized Pell graphs Πn,k from this paper, their structure is significantly different. For instance,
if n and k are both odd, then the center of Πk

n consists of a single vertex, while we have seen in Theorem 4.2

that the center of Πn,k contains 2
n−1
2 vertices. Additional structural differences include:

• For k = 2 , Πn,2
∼= Πn , but Π2

n is not isomorphic to the Pell graph.

• For k ≥ 2 and n ≥ 3 , diam(Πn,k) = nk − dn
2 e < nk − 1 = diam(Πk

n) .

• For n ≥ 4 , graphs Πn,k contain strictly more vertices of degree 2n − 1 than graphs Πk
n (combining

Corollary 5.6 and an observation that Πk
n contains 2n(n − 1)k−2 + (n − 1)(n − 2)k−2 vertices of degree

2n− 1 , which are vertices t with |t|0 = 1 , |t|a−1 = |t|a = 0 , or |t|a−1 = 1 , |t|0 = |t|a = 0 , or exactly one
occurrence of 0(a− 1) and otherwise containing only letters from [k − 2]).

We conclude the paper with some problems that appear interesting for further investigation.
As mentioned in Proposition 3.3, it is easy to see that graphs Πn,k are traceable. The existence of a

Hamiltonian cycle seems more complicated.

Problem 5.9 Characterize graphs Πn,k that are Hamiltonian.

In Proposition 5.8 we prove that Πn,k is a subgraph of a sufficiently large Fibonacci cube. However, it
is not clear if the result is optimal.

Problem 5.10 Does there exist a function f(n, k) < (2k − 2)n − 1 such that for every n ≥ 1 and k ≥ 2 ,
Πn,k ⊆ Γf(n,k)?

It would be of interest to know the (edge) connectivity of generalized Pell graphs. For both of them we
suspect that they are equal to the minimum degree (for every n ≥ 1 and k ≥ 2).

Problem 5.11 Determine κ(Πn,k) and κ′(Πn,k) .
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